Gene Expression Biomarkers for Identifying Vigilance Impairment from Total Sleep Deprivation

Hilary A. Uyhelji, Doris M. Kupfer, Vicky L. White, Melinda L. Jackson, Hans P. A. Van Dongen, Dennis M. Burian

Presented to: 10th International Conference on Managing Fatigue
By: Hilary A. Uyhelji, PhD
Date: 22 March 2017
Fatigue is a concern in transportation safety, and health in general. Yet how do we objectively measure fatigue?
Experimentally impose acute sleep deprivation

• **Wash. State Univ. sleep lab for 7 days**
 – 6 Control persons: 10 h in bed each night
 – 11 Sleep Deprived persons (SD): 62 h wakefulness

• **Data collection**
 – Blood for gene expression microarrays
 – Psychomotor Vigilance Test (PVT) for cognition

• **Test for differential gene expression**
 – Treatment effect: Control vs. SD individuals
 – Cognitive performance: PVT lapses

For cognition measurements and overview of study design, see Whitney et al. 2015 (http://dx.doi.org/10.5665/sleep.4668)
Blood draws for gene expression every other day

- Control: 10 h in bed every night
- Sleep Deprived: no sleep from 08:00 Day 3, until 22:00 Day 5

Informed consent and IRB approval were obtained for this research.

22 March 2017
PVT lapses increase with SD

- Control
- Sleep Deprived

Time

Baseline, Day 2
Experimental, Day 4 (hours 24-36 of SD)
Recovery, Day 6 (after 10 h in bed)
Clustering ~212 treatment effect genes by temporal expression in SD subjects

Cluster 1

Cluster 2

Cluster 3

Cluster Membership Score

22 March 2017
Functional enrichment of the 212 genes related to SD

<table>
<thead>
<tr>
<th>Functional Group</th>
<th>Enrichment Score</th>
<th>Number of Genes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.43</td>
<td>99</td>
<td>membrane</td>
</tr>
<tr>
<td>2</td>
<td>2.82</td>
<td>14</td>
<td>immunoglobulin</td>
</tr>
<tr>
<td>3</td>
<td>2.74</td>
<td>16</td>
<td>cell adhesion</td>
</tr>
<tr>
<td>4</td>
<td>2.34</td>
<td>38</td>
<td>cell motility; inflammatory response</td>
</tr>
<tr>
<td>5</td>
<td>2.24</td>
<td>13</td>
<td>cell junction</td>
</tr>
<tr>
<td>6</td>
<td>2.03</td>
<td>12</td>
<td>coagulation</td>
</tr>
<tr>
<td>7</td>
<td>1.96</td>
<td>21</td>
<td>cell fraction</td>
</tr>
<tr>
<td>8</td>
<td>1.76</td>
<td>3</td>
<td>metal ion-binding site:calcium</td>
</tr>
<tr>
<td>9</td>
<td>1.44</td>
<td>15</td>
<td>vesicle</td>
</tr>
<tr>
<td>10</td>
<td>1.43</td>
<td>3</td>
<td>sushi; complement control module</td>
</tr>
<tr>
<td>11</td>
<td>1.33</td>
<td>13</td>
<td>lipoprotein</td>
</tr>
</tbody>
</table>

Functional analysis performed with the DAVID bioinformatics tool at https://david.ncifcrf.gov

22 March 2017
Diseases and functions for the 212 SD genes

Blue = inhibition. Orange = activation.

Z-score: <-3.32

22 March 2017
Mechanistic network of upstream regulators for SD genes

59 downstream SD genes used to predict this network (all but 4 of which are down-regulated by SD)
Clustering 28 PVT cognition genes by their temporal expression in SD subjects
Functional enrichment of the 28 genes related to PVT scores

<table>
<thead>
<tr>
<th>Functional Group</th>
<th>Enrichment Score</th>
<th>Number of Genes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.65</td>
<td>9</td>
<td>cell motility; inflammatory response</td>
</tr>
<tr>
<td>2</td>
<td>1.37</td>
<td>9</td>
<td>vesicle-mediated transport; intracellular signaling cascade</td>
</tr>
<tr>
<td>3</td>
<td>1.37</td>
<td>19</td>
<td>membrane</td>
</tr>
<tr>
<td>4</td>
<td>1.35</td>
<td>5</td>
<td>calcium-binding EF-hand</td>
</tr>
</tbody>
</table>

Functional analysis performed with the DAVID bioinformatics tool at https://david.ncifcrf.gov

22 March 2017
Summary of findings

• Measurable effects on cognition and gene expression (e.g., cytokines) with one night of sleep deprivation

• Overall, we see a reduction in gene expression with sleep deprivation

• Future needs:
 – Fine-tune cognitive measures
 – Increase sample size
 – Assess circadian component
Acknowledgments

• FAA: grant DTFAAC-11-A-00003
• NIH: grant R01HL105768