Predicting Performance and Safety Based on Driver Fatigue

Daniel Mollicone, Ph.D.

10th International Conference on Managing Fatigue
March 20–23, San Diego CA
Fatigue Meter: Identify drivers at elevated fatigue risk

<table>
<thead>
<tr>
<th>Date</th>
<th>Legs</th>
<th>People on duty</th>
<th>Avg fatigue</th>
<th>Max fatigue</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 24 - January 30, 2016</td>
<td>28</td>
<td>0</td>
<td>7</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fatigue</th>
<th>Name</th>
<th>Legs</th>
<th>Period Avg</th>
<th>Deviation from historical avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Drael, Lara</td>
<td>2</td>
<td>10</td>
<td>+2</td>
</tr>
<tr>
<td>16</td>
<td>White, Jamie</td>
<td>4</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Bruno, Steve</td>
<td>3</td>
<td>8</td>
<td>+1</td>
</tr>
<tr>
<td>14</td>
<td>Smith, John</td>
<td>3</td>
<td>6</td>
<td>-1</td>
</tr>
<tr>
<td>13</td>
<td>Current, Matt</td>
<td>3</td>
<td>8</td>
<td>+1</td>
</tr>
<tr>
<td>12</td>
<td>Murphy, Alyssa</td>
<td>4</td>
<td>6</td>
<td>-1</td>
</tr>
<tr>
<td>11</td>
<td>Strange, Mike</td>
<td>2</td>
<td>6</td>
<td>-4</td>
</tr>
<tr>
<td>9</td>
<td>Byrne, Mike</td>
<td>2</td>
<td>5</td>
<td>-2</td>
</tr>
<tr>
<td>6</td>
<td>Bealle, Larry</td>
<td>2</td>
<td>5</td>
<td>-2</td>
</tr>
<tr>
<td>6</td>
<td>Vecchio, Steve</td>
<td>3</td>
<td>5</td>
<td>-3</td>
</tr>
</tbody>
</table>

© 2017 Pulsar Informatics, Inc. All rights reserved.
Data collected in naturalistic field study

Study overview:

• 106 US truck drivers
 o 44 local drivers
 o 26 regional drivers
 o 36 long-distance drivers

• Drivers were studied across two duty cycles intervened by a restart break of at least 34h

• Data collected included:
 o HOS logs
 o Wrist actigraphy and sleep diary
 o Continuous measurement of vehicle performance

• Analysis based on 48 drivers
Timing of duty and sleep

Drivers exhibited wide variety of schedule patterns

Day driver

Night driver

Mixed driver

© 2017 Pulsar Informatics, Inc. All rights reserved.
Analysis of the work day duration and composition

Total hours driving per day → Risk (Exposure)

- **Total Hours Driving Per Day**
 - Average hours of driving: 6.9h

- **Total Hours On-Duty but not Driving**
 - Average hours of on-duty: 2.2h
Analysis of the work day duration and composition

Long duty days → Restricted sleep opportunity → Fatigue

Total Hours Driving & On-duty Per Day

Average hours on-duty/driving: 9.0h

Total Hours Driving & On-duty & Breaks

Average duration of duty day: 10.6h
Analysis of the work day by time of day

Variable start times → Disrupted circadian cycles → Fatigue
Analysis of sleep timing and duration

17.1% of the time drivers had <5 hours of sleep (105/600 driver-days)

![Graph showing total daily sleep duration and distribution of sleep timing.](image)
Analysis of fatigue and performance

Analysis overview:

- Extracted hard braking events from vehicle acceleration data based on threshold of 3mph/s and 5mph/s with initial speed greater than 50mph.
- Estimated fatigue based on HOS data from the ELD using published biomathematical model (McCauley et al., 2009, 2013)
- Estimated effect of fatigue on hard-braking rates based on nonlinear mixed-effects with time-of-day covariates.
Estimated fatigue and hard breaking events

Fatigue was above 12 while driving only 2.8% of the time

Distribution of Fatigue While Driving

Hard Breaking Events by Time of Day

Peak traffic

<table>
<thead>
<tr>
<th>Hours Driven at Fatigue Level</th>
<th>Fatigue</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

Mean Fatigue: 6.1
Estimated fatigue and hard breaking events

Hard Breaking Events as a Function of Fatigue
(Threshold >3 mph/s)

Hard Breaking Events as a Function of Fatigue
(Threshold >5 mph/s)
Acknowledgments

Trucking Fatigue Meter
(TPOC: Theresa Hallquist, M.S.)

Field Study of the Efficacy of the New Restart Provision for Hours of Service
(TPOC: Martin Walker, Ph.D.)

Pulsar Informatics, Inc.
Daniel Mollicone, Ph.D.
Kevin Kan, M.S.
Steve Bruneau, M.S.
Rachel Bartels, M.S.
Aaron Unice

Washington State University
Hans Van Dongen, Ph.D.
Amy Sparrow, M.S.
Samantha Riedy
Brieann Satterfield

Virgina Tech Trucking Institute
Richard Hanowski, Ph.D.